

 Navigation

 	
 index

 	
 next |

 	Morepath by Example tutorial

Welcome to ‘Morepath by Example’

You want to develop an application with Python and Morepath? Here you have the
chance to learn that by example. In this tutorial we will create a simple
microblog application. It only supports one user that can create text-only
entries and there are no feeds or comments, but it still features everything
you need to get started. We will use Morepath as our framework and SQLite as
our database which comes out of the box with Python, so there is nothing else
you need.

If you want the full source code in advance or for comparison, check out the
example source [https://github.com/webmaven/moreblog/].

Contents:

	Introducing MoreBlog

	Step 0: Setup Your Machine!
	Setup Linux

	Setup Mac

	Setup Windows

	python

	gedit

	git, sshkeys, github

	virtualenv

	pip

	morepath

	Step 1: Creating The Folder

	Step 2: Adding the DB Schema

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Michael R. Bernstein.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Morepath by Example tutorial

Introducing MoreBlog

We will call our blogging application MoreBlog here, feel free to choose a
less web-2.0-ish name ;) Basically we want it to do the following things:

	let the user sign in and out with credentials specified in the
configuration. Only one user is supported.

	when the user is logged in they can add new entries to the page
consisting of a text-only title and some HTML for the text. This HTML
is not sanitized because we trust the user here.

	the page shows all entries so far in reverse order (newest on top) and
the user can add new ones from there if logged in.

We will be using SQLite3 directly for that application because it’s good
enough for an application of that size. For larger applications however
it makes a lot of sense to use SQLAlchemy [http://www.sqlalchemy.org/] that handles database
connections in a more intelligent way, allows you to target different
relational databases at once and more. You might also want to consider
one of the popular NoSQL databases if your data is more suited for those.

Here a screenshot from the final application:

[image: screenshot of the final application]
Continue with Step 1: Creating The Folder.

 Copyright 2014, Michael R. Bernstein.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Morepath by Example tutorial

Step 0: Setup Your Machine!

Goal: All learners will have a consistent computing environment for the rest
of the workshop.

Learners: For each technology below, install and setup on your machine.

Guides: Verify the learner has completed install for each technology below.

	Setup Linux

	Setup Mac

	Setup Windows

	python

	gedit

	git, sshkeys, github

	virtualenv

	pip

	morepath

 Copyright 2014, Michael R. Bernstein.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Morepath by Example tutorial

 	Step 0: Setup Your Machine!

Setup Linux

Your Computer

What is Your Computer?

Your computer is the thing you are reading and typing on :) You should know
a few things about it before we go much further.

Why do I need my Computer?

Starting development work requires at least a passing familiarity with what is
happening inside your machine, what software is installed, and where to look
next for help!

Get information about your computer!

	Figure out your OS and version

	sudo privilege is pretty helpful

	Check to see that you have at least 1 Gb of disk space left.

	Start up a terminal. You can find the Terminal application at Applications/Accessories/Terminal, or it may already be on your menu bar. In your terminal:

$ uname -a

Verify It Works!

Know your OS and version number? Good!

Command Line Interface

What is a Command Line Interface (CLI)?

A command line interface (CLI) is way of interacting with a computer by typing
commands. DOS is an example of a command line interface.

Why do I need a Command Line Interface (CLI)?

Many development tools don’t have graphic user interfaces–they only have
command line interfaces.

Get a Command Line Interface (CLI)!

	Linux comes with a command line interface included!

	The program used to access the CLI is often called a “terminal”.

Verify It Works!

Start up a terminal. You can find the Terminal application at Applications/Accessories/Terminal, or it may already be on your menu bar. In your terminal:

$ bash --version

gedit

What is gedit?

gedit is a cross-platform, syntax-highlighting text editor.

Why do I need gedit?

To write your code in! Word is a fine program, but it is not a text editor.

Get gedit!

Gedit is probably installed on your machine already.

	Ubuntu/Debian: https://help.ubuntu.com/community/gedit and follow the instructions

	Redhat: yum install gedit

	Build form source: http://ftp.gnome.org/pub/GNOME/sources/gedit/2.30/gedit-2.30.2.tar.gz

python

What is python?

Python is a general purpose, dynamically-typed, strongly-typed, interpreted
computer programming language.

Why do I need python?

Well, this is a Python progammming workshop!

Get python!

Linux comes with Python installed!

Verify It Works!

	Start up a terminal. You can find the Terminal application at Applications/Accessories/Terminal, or it may already be on your menu bar.

	Test your Python install at the command prompt. Type python and hit enter. You should see something like:

Python 2.5.2 (r252:60911, Jan 24 2010, 17:44:40)
[GCC 4.3.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

To exit the Python prompt, type exit()
and press Enter. This will take you back to the Terminal command prompt.

 Copyright 2014, Michael R. Bernstein.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Morepath by Example tutorial

 	Step 0: Setup Your Machine!

Setup Mac

Your Computer

What is Your Computer?

Your computer is the thing you are reading and typing on :) You should know
a few things about it before we go much further.

Why do I need my Computer?

Starting development work requires at least a passing familiarity with what is
happening inside your machine, what software is installed, and where to look
next for help!

Get information about your computer!

	Figure out your OS and version

	An Admin type account is pretty helpful (“Allow user to administer this
computer”)

	Check to see that you have at least 1 Gb of disk space left.

Apple menu (upper left) > About This Mac

[image: images/about_mac.png]

Verify It Works!

Know your OS and version number? Good!

Command Line Interface

What is a Command Line Interface (CLI)?

A command line interface (CLI) is way of interacting with a computer by typing
commands.

Why do I need a Command Line Interface (CLI)?

Many development tools don’t have graphic user interfaces–they only have
command line interfaces.

Get a Command Line Interface (CLI)!

Macs come with a command line interface included!

Verify It Works!

	Start up a Terminal. You can find the Terminal application through Spotlight, or navigate to Applications/Utilities/Terminal. In your terminal, type:

bash --version

Output should look similar to:

$ bash --version
GNU bash, version 3.2.48(1)-release (x86_64-apple-darwin10.0)
Copyright (C) 2007 Free Software Foundation, Inc.

Terminal

While Terminal is a full-featured utility, its default configuration is a bit poor for programming usage. Let’s configure Terminal to be a bit more friendly.

	In your Terminal, copy and paste this command into your terminal and then hit enter. All this yarnbarf is to enable a colored terminal prompt.

echo "export PS1='\[\e[0;33m\]\u\[\e[0;37m\]\[\e[0;36m\](\W)\[\e[0;0m\]\$ '" >> .bash_profile

	Click Terminal in the upper-left hand corner, and go to Preferences.

	Click on the Settings Section (right of Startup and left of Window Groups)

	Highlight the Pro choice in the list on the left, and then click the Default button underneath

	Click the Window tab (left of Text and right of Shell)

	Click the black block left of “Color” and drag the Opacity slider to the right (100%)

	Set the number of Rows to 40, under the Window Size section. Feel free to adjust taller or shorter to taste.

	Close your Preferences window and terminal, and then go to Shell > New Window

Done properly, your new terminal should look like this:

[image: images/configured-terminal.app.png]

gedit

What is gedit?

gedit is a cross-platform, syntax-highlighting text editor.

Why do I need gedit?

To write your code in! Word is a fine program, but it is not a text editor.

Get gedit!

	http://ftp.gnome.org/pub/GNOME/binaries/mac/gedit/2.30/gedit-2.30.2.dmg

	Install using the usual OSX ‘DMG’ style drag and drop installer.

	Add the application to your dock if you are so inclined.

python

What is python?

Python is a general purpose, dynamically-typed, strongly-typed, interpreted
computer programming language.

Why do I need python?

Well, this is a Python programming workshop!

Get python!

OS X comes with Python installed!

Verify It Works!

	Start up a Terminal. You can find the Terminal application through Spotlight, or navigate to /Applications/Utilities/Terminal

	Test your Python install at the command prompt. Type python and hit enter. You should see something like:

Python 2.6.1 (r261:67515, Feb 11 2010, 00:51:29)
[GCC 4.2.1 (Apple Inc. build 5646)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

Type exit() to return to your terminal/shell. Don’t worry if your version
is different than the one shown here. Any 2.x series python 2.5 or higher
(i.e., 2.5, 2.6, 2.7) should be fine!

 Copyright 2014, Michael R. Bernstein.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Morepath by Example tutorial

 	Step 0: Setup Your Machine!

Setup Windows

Your Computer

What is Your Computer?

Your computer is the thing you are reading and typing on :) You should know
a few things about it before we go much further.

Why do I need my Computer?

Starting development work requires at least a passing familiarity with what is
happening inside your machine, what software is installed, and where to look
next for help!

Get information about your computer!

	Figure out your OS and version

	An Administrator type account is pretty helpful

	Check to see that you have at least 1 Gb of disk space left.

Control Panel > System

[image: images/windows_sys.jpg]

Verify It Works!

Know your OS and version number? Good!

Command Line Interface

What is a Command Line Interface (CLI)?

A command line interface (CLI) is way of interacting with a computer by typing
commands.

Why do I need a Command Line Interface (CLI)?

Many development tools don’t have graphic user interfaces–they only have
command line interfaces. Windows comes with a command line interface called a command prompt. Unfortunately, it does not support all of the tools we want to use.

Get a Command Line Interface (CLI)!

	One of the easiest ways to get all the tools at once is from mysysGit

	Download and install msysGit-fullinstall from http://msysgit.github.io/

	This will install MSYS/Mingw/GitBash (it has many names!).

Note

If you are not an administrator on your machine, you might
have to choose an alternate path for install rather than C:\Git,
such as C:\Documents and Settings\yourname\Git\.

You will also want to make the MSYS/MINGW bash window behave in a saner
way. After opening it, ‘right-click’ on the title bar, and select
‘properties’. Under ‘Edit Options’, enable ‘Quick Edit Mode’.

Verify It Works!

In your command window:

$ bash --version

gedit

What is gedit?

gedit is a cross-platform, syntax-highlighting text editor.

Why do I need gedit?

To write your code in! Word is a fine program, but it is not a text editor.

Get gedit!

	http://ftp.gnome.org/pub/GNOME/binaries/win32/gedit/2.30/gedit-setup-2.30.1-1.exe

python

What is python?

Python is a general purpose, dynamically-typed, strongly-typed, interpreted
computer programming language.

Why do I need python?

Well, this is a Python progammming workshop!

Get python!

	Go to http://python.org/download/ and download the latest version of Python 2.7 (2.7.1 at the time of writing). Unless you know otherwise, get the “Windows Installer” version, and not the “Windows X86-64 Installer” version.

	Start up a command prompt by clicking on the Start menu, clicking the Run... option, typing cmd, and hitting enter. If you are using Windows Vista, you should click on the Start menu, type cmd into the Search field directly above the Start menu button, and click on cmd in the search results above the Search field.

Test your Python install by typing \Python27\python.exe
and hitting enter. You should see something like:

Python 2.7.1 (r271:86832, ...) on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

To exit the Python prompt, type exit() and press Enter. This will take you back to the Windows command prompt.

We also would like to make sure our python is available from the msys/mgit/mingw cli.
After starting up msys/mgit:

$ echo '#!/bin/sh' > /bin/python
$ echo 'C:/Python27/python.exe $*' >> /bin/python
$ echo 'export PATH=$PATH:/c/Python27/Scripts' > ~/.profile
$ source ~/.profile

From here on, if you are in the msys/mgit/mingw cli, you can type python
to get a python prompt, should you need one!

Verify It Works!

After install, show your guide that use can start up python. You should
see something like:

Python 2.7.1 (r271:86832, ...) on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

Type exit() to return to your terminal/shell. Don’t worry if your version
is different than the one shown here. Any 2.x series python 2.5 or higher
(i.e., 2.5, 2.6, 2.7) should be fine!

 Copyright 2014, Michael R. Bernstein.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Morepath by Example tutorial

 	Step 0: Setup Your Machine!

python

What is python?

Python is a general purpose, dynamically-typed, strongly-typed, interpreted
computer programming language.

Why do I need python?

Well, this is a Python progammming workshop!

Get python!

windows

	Go to http://python.org/download/ and download the latest version of Python 2.7 (2.7.1 at the time of writing). Unless you know otherwise, get the “Windows Installer” version, and not the “Windows X86-64 Installer” version.

	Start up a command prompt by clicking on the Start menu, clicking the Run... option, typing cmd, and hitting enter. If you are using Windows Vista, you should click on the Start menu, type cmd into the Search field directly above the Start menu button, and click on cmd in the search results above the Search field.

Test your Python install by typing \Python27\python.exe
and hitting enter. You should see something like:

Python 2.7.1 (r271:86832, ...) on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

To exit the Python prompt, type exit() and press Enter. This will take you back to the Windows command prompt.

We also would like to make sure our python is available from the msys/mgit/mingw cli.
After starting up msys/mgit:

$ echo '#!/bin/sh' > /bin/python
$ echo 'C:/Python27/python.exe $*' >> /bin/python
$ echo 'export PATH=$PATH:/c/Python27/Scripts' > ~/.profile
$ source ~/.profile

From here on, if you are in the msys/mgit/mingw cli, you can type python
to get a python prompt, should you need one!

Mac OSX

OS X ships with Python installed, so the goal of this page is to make sure you can start a Terminal and run Python from the command line.

	Start up a Terminal. You can find the Terminal application through Spotlight, or navigate to Applications/Utilities/Terminal

	Test your Python install at the command prompt. Type python and hit enter. You should see something like:

Python 2.6.1 (r261:67515, Feb 11 2010, 00:51:29)
[GCC 4.2.1 (Apple Inc. build 5646)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

Linux

Linux ships with Python installed, so the goal of this page is to make sure you can start a terminal and run Python from the command line.

	Start up a terminal. You can find the Terminal application at Applications/Accessories/Terminal, or it may already be on your menu bar.

	Test your Python install at the command prompt. Type python and hit enter. You should see something like:

Python 2.5.2 (r252:60911, Jan 24 2010, 17:44:40)
[GCC 4.3.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

To exit the Python prompt, type exit()
and press Enter. This will take you back to the Terminal command prompt.

Verify It Works!

After install, show your guide that use can start up python. You should
see something like:

Python 2.6.1 (r261:67515, Feb 11 2010, 00:51:29)
[GCC 4.2.1 (Apple Inc. build 5646)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

Type exit() to return to your terminal/shell. Don’t worry if your version
is different than the one shown here. Any 2.x series python 2.5 or higher
(i.e., 2.5, 2.6, 2.7) should be fine!

 Copyright 2014, Michael R. Bernstein.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Morepath by Example tutorial

 	Step 0: Setup Your Machine!

gedit

What is gedit?

gedit is a cross-platform, syntax-highlighting text editor.

Why do I need gedit?

To write your code in! Word is a fine program, but it is not a text editor.

Get gedit!

	Gedit’s main site: http://projects.gnome.org/gedit/ . Download links are in the upper right corner.

	(alternate) copy the installer from the Group Guide memory stick.

windows

http://ftp.gnome.org/pub/GNOME/binaries/win32/gedit/2.30/gedit-setup-2.30.1-1.exe

Mac OSX

	http://ftp.gnome.org/pub/GNOME/binaries/mac/gedit/2.30/gedit-2.30.2.dmg

	install using the usual OSX ‘DMG’ style drag and drop installer.

	add the application to your dock if you are so inclined.

Linux

Gedit is probably installed on your machine already.

	ubuntu/debian: https://help.ubuntu.com/community/gedit and follow the instructions

	redhat: yum install gedit

	build form source: http://ftp.gnome.org/pub/GNOME/sources/gedit/2.30/gedit-2.30.2.tar.gz

Verify It Works!

After installing, start gedit up by clicking on its icon, typing gedit from your cli or the like.

Suggested configuration:

In the preferences window

	view, turn on:

	display line numbers

	display right margin

	highlight matching bracket

	highlight current line

	syntax-highlighting: Highlight Mode -> Scripts -> Python

	editor:

	change tab with to 4

	check the box to insert spaces instead of tabs

	font & colors:

	choose a good monospace editor font

	choose a color scheme (Gregg likes Cobalt)

	plugins

	checkupdate

	code comment

	drawspaces

	filebrowser

	indentlines

	python console

Once you are satified, restart gedit. If it looks similar to the screenshot below, you are done!

[image: images/configured-gedit.png]

 Copyright 2014, Michael R. Bernstein.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Morepath by Example tutorial

 	Step 0: Setup Your Machine!

git, sshkeys, github

What is git?

git is a distributed verion control system ([D]VCS) [http://en.wikipedia.org/wiki/Revision_control] .
Others includee mercurial (hg) and bazaar (bzr).

Why do I need git?

To download project sources, keep track of progress, and save your work.

Get git!

Note

	During the git install, choose all default settings

	Skip the “take a crash course on git” at GitHub.

	Skip other optional lessons (on terminal, etc.), unless you feel
so inclined!

	where it says ‘text editor’ you can use Gedit, if you like.

	Set up a github account before setting up your keys!

windows

	follow the instructions at http://help.github.com/win-set-up-git/ .

	This will install MSYS/Mingw/GitBash (it has many names!).

Note

If you are not an administrator on your machine, you might
have to choose an alternate path for install rather than C:\Git,
such as C:\Documents and Settings\yourname\Git\.

You will also want to make the MSYS/MINGW bash window behave in a saner
way. After opening it, ‘right-click’ on the title bar, and select
‘properties’. Under ‘Edit Options’, enable ‘Quick Edit Mode’.

Mac OSX

Note

When you get to the git download, you probably want the 386 version
(vs. x64) of the ‘newest’ (highest version number) git install .dmg file.

follow the instructions at http://help.github.com/mac-set-up-git/ .

(alternate path : brew install git if homebrew is installed)

Linux

follow the instructions at http://help.github.com/linux-set-up-git/

Verify It Works!

	at your command-line, type git. Show your guide your ssh-key.

	show your guide your github account and userid.

 Copyright 2014, Michael R. Bernstein.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Morepath by Example tutorial

 	Step 0: Setup Your Machine!

virtualenv

What is virtualenv?

virtualenv is a tool that creates “new” Python installations that are
copies of your installed Python. These “virtual environments” are clean and
consistent.

Why do I need virtualenv?

To keep work areas clean and consistent, and minimize assumptions about
what tools are installed where. This makes it easier to have repeatable,
consistent builds.

Get virtualenv!

$ pip install virtualenv

Verify It Works!

assume you have created a directory D and moved to it!
$ virtualenv --no-site-packages testenv
$. testenv/bin/activate # windows -> . testenv\Scripts\activate.bat
your prompt should change to say (testenv)
$ deactivate
remove the testenv directory
rm -rf testenv

	http://pypi.python.org/pypi/virtualenv

 Copyright 2014, Michael R. Bernstein.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Morepath by Example tutorial

 	Step 0: Setup Your Machine!

pip

What is pip?

pip is a utility for install and uninstalling Python packages.
Packages are bundles of code that give additional functionality to an
existing Python installation.

Why do I need pip?

To install and manage packages in a consistent way in Python.

Get pip!

First, install ez_setup to get easy_install (the old python
package managers).

	Open a terminal and run these commands:

$ curl http://peak.telecommunity.com/dist/ez_setup.py | python
$ easy_install pip

Verify It Works!

Run pip . You should see something like:

$ pip
Usage: pip COMMAND [OPTIONS]

pip: error: You must give a command (use "pip help" to see a list of commands)

 Copyright 2014, Michael R. Bernstein.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Morepath by Example tutorial

 	Step 0: Setup Your Machine!

morepath

What is Morepath?

Morepath is a new web-development framework written in Python.

Why do I need morepath?

For building our blog application!

Get Morepath!

We don’t want to install Morepath system wide, but rather in our local
virtualenv. We’re also going to install SQLAlchemy, a library which will make it easier for us to use a database from our Morepath app later.

$ pip install morepath
$ pip install sqlalchemy

Verify It Works!

$ python
>>> import morepath

To quit the python prompt do:

exit()

Verify you can create a new Morepath app

Create a hello.py file with the following code:

import morepath

class App(morepath.App):
 pass

@App.path(path='')
class Root(object):
 pass

@App.view(model=Root)
def hello_world(self, request):
 return "Hello World!"

if __name__ == '__main__':
 config = morepath.setup()
 config.scan()
 config.commit()
 morepath.run(App())

And run it:

$ python hello.py

Output should look like this:

Running <__main__.App object at 0x7fda6fe86990> with wsgiref.simple_server on http://127.0.0.1:5000

In your browser, go to http://127.0.0.1:5000/

You should see in the browser the text ‘Hello World’, and in your terminal window you should see something like:

127.0.0.1 - - [30/Nov/2014 09:03:20] "GET / HTTP/1.1" 200 12
127.0.0.1 - - [30/Nov/2014 09:03:20] "GET /favicon.ico HTTP/1.1" 404 154

In the Terminal window where you ran python main.py,
type control-c to kill the server.

Congratulations, you have run your first Morepath app!

How does this work?

We’ll go into more detail as we develop our blogging app, but here is a quick
overview of what this code is doing:

import morepath

class App(morepath.App):
 pass

We import morepath, and then we create a subclass of morepath.App.
This class contains our application’s configuration: what models and views are
available. It can also be instantiated into a WSGI application object.

@App.path(path='')
class Root(object):
 pass

We then set up a Root class. Morepath is model-driven and in order to
create any views, we first need at least one model, in this case the empty
Root class.

We set up the model as the root of the website (the empty string ''
indicates the root, but '/' works too) using the morepath.App.path()
decorator.

@App.view(model=Root)
def hello_world(self, request):
 return "Hello World!"

Now we can create the “Hello world” view. It’s just a function that takes
self and request as arguments (we don’t need to use either in this
case), and returns the string "Hello World!". The self argument of a
view function is the instance of the model class that is being viewed.

We then need to hook up this view with the morepath.App.view() decorator.
We say it’s associated with the Root model. Since we supply no explicit
name to the decorator, the function is the default view for the Root
model on /.

if __name__ == '__main__':
 config = morepath.setup()
 config.scan()
 config.commit()
 morepath.run(App())

The if __name__ == '__main__' section is a way in Python to make the code
only run if the hello.py module is started directly with Python as
discussed above.

morepath.setup() sets up Morepath’s default behavior, and returns a
Morepath config object.

We then scan() this module (or package) for configuration decorators (such
as morepath.App.path() and morepath.App.view()) and cause them to
be registered using morepath.Config.commit().

This step ensures your configuration (model routes, views, etc) is loaded
exactly once in a way that’s reusable and extensible.

Continue with Step 1: Creating The Folder.

 Copyright 2014, Michael R. Bernstein.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Morepath by Example tutorial

Step 1: Creating The Folder

Before we get started, let’s create the folders and files needed for this
application:

/moreblog
 setup.py
 /moreblog
 __init__.py
 main.py
 model.py
 path.py
 view.py

The outer moreblog folder will not be a python package, but just somewhere we
drop our files. We will then put our actual package containing all of our code
into the inner moreblog folderfolder

As a first step, we need to list our dependencies and how to start the app in
setup.py:

from setuptools import setup, find_packages

setup(name='moreblog',
 packages=find_packages(),
 install_requires=[
 'setuptools',
 'morepath',
 'transaction',
 'more.transaction',
 'zope.sqlalchemy >= 0.7.4',
 'sqlalchemy >= 0.9',
 'werkzeug',
],
 entry_points={
 'console_scripts': [
 'moreblog-start = moreblog.main:main'
]
 })

A few notes on the dependency packages: morepath specifies the latest
version (currently 0.9 at the time of this writing), transaction,
more.transaction, zope.sqllchemy, and sqlalchemy are all concerned
with database persistence, and werkzeug is the web server we’ll be using
to run the app, chosen because it will auto refresh when files are edited
without requiring a restart.

entry_points is defining a command that will start the app, in this case,
moreblog-start, when the package is installed.

Continue with Step 2: Adding the DB Schema.

 Copyright 2014, Michael R. Bernstein.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 previous |

 	Morepath by Example tutorial

Step 2: Adding the DB Schema

In model.py add the following code:

from sqlalchemy import (
 Column,
 Integer,
 Text,
 DateTime,
 ForeignKey,
)
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class Post(Base):
 __tablename__ = 'post'

 id = Column(Integer, primary_key=True)
 title = Column(Text)
 content = Column(Text)

In this code, we are importing from SQLAlchemy [http://sqlalchemy.org], a popular Python ORM, and
then creating a table-based model class (As well see later though, Morepath
models need not be based on a database, and can be almost any sort of object).

In our app, blog posts are very simple, and have an id, a title, and some content.

Next, in main.py, add the following .. code:

import morepath
import sqlalchemy
from more.transaction import transaction_app
from sqlalchemy.orm import scoped_session, sessionmaker
from zope.sqlalchemy import register

from werkzeug.serving import run_simple

from . import model

Session = scoped_session(sessionmaker())
register(Session)

class App(morepath.App):
 pass

def main():
 engine = sqlalchemy.create_engine('sqlite:///morepath_sqlalchemy.db')
 Session.configure(bind=engine)
 model.Base.metadata.create_all(engine)
 model.Base.metadata.bind = engine

 morepath.autosetup()
 run_simple('localhost', 8080, App(), use_reloader=True)

With this code, we are setting up the app to be run from the console script, making
sure that the app has a database session, and also instantiatiating the database and
table for storing the blog posts.

 Copyright 2014, Michael R. Bernstein.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	Morepath by Example tutorial

Index

 Copyright 2014, Michael R. Bernstein.
 Created using Sphinx 1.2.3.

 _static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/down.png

dependencies/dep-yourcomputer.html

 Navigation

 		
 index

 		Morepath by Example tutorial »

your computer

What is Your Computer?

Your computer is the thing you are reading and typing on :) You should know
a few things about it before we go much further.

Why do I need my Computer?

Starting development work requires at least a passing familiarity with
what is happening inside your machine, what software is installed, and
where to look next for help!

Get information about your computer!

		Figure out your OS and version

		(root rights are pretty helpful - sudo on Mac/Linux, admin on Windows)

		Check to see that you have at least 1 Gb of disk space left.

windows

Control Panel > System

[image: images/windows_sys.jpg]

Mac OSX

Apple menu (upper left) > About This Mac

[image: images/about_mac.png]

Linux

In your terminal:

uname -a

Verify It Works!

Know your OS and version number? Good!

 © Copyright 2014, Michael R. Bernstein.
 Created using Sphinx 1.2.3.

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

